

THE USE OF NEW APPROACH METHODS IN CHEMICAL RISK ASSESSMENTS

Bob Diderich, OECD

Chemical Grouping

- GD 194: GD on Grouping of Chemicals, Second Edition (2014)
 - Recommendations on grouping strategies
 - Data needs to support groups
- In the process of updating the document to reflect learnings and use of additional methods
 - Lesson learned from case studies on grouping and read across approaches
 - Use of Omics to support chemical groups

	Chemical 1	Chemical 2	Chemical 3	Chemical 4	
Structure	xxxxxxxx	xxxxxxxxx	>>>>>>>		
Property 1	• =	> 0	• =	⇒ o	
Property 2	• =	→ 0	0 4	-	
Property 3	0 4		• =	⇒ o	
Activity 1	• =	→ 0	• =	⇒ °	
Activity 2	• =	⇒ 0	0 ¢	-	
Activity 3	0 4	-	• =	⇒ °	

SAR/Read-across
Interpolation
Extrapolation
SAR/Read-across
Interpolation

Extrapolation

Existing data point
 Missing data point

QSAR TOOLBOX

• Free software application to predict the properties of chemicals (version 4.7 launched in 2024)

• Estimate missing experimental values by read-across and trend analysis (grouping of similar chemicals, chemical categories)

www.qsartoolbox.org

(Quantitative) Structure-Activity Relationships

WEBINAR ON THE NEW OECD (Q)SAR ASSESSMENT FRAMEWORK: GUIDANCE FOR ASSESSING (Q)SAR MODELS AND PREDICTIONS

The webinar provided an overview of the new OECD (Q)SAR Assessment Framework for evaluating the scientific validity of (Q)SAR models, predictions, and results from multiple predictions. The QAF provides assessment elements for existing principles for evaluating model as well as new principles for evaluating predictions and results. In addition to the principles, assessment elements, and guidance for evaluating each element, the QAF includes a checklist for reporting assessments.

This new Framework provides regulators with a consistent and transparent approach for reviewing the use of (Q)SAR predictions in a regulatory context and increases the confidence to accept alternative methods for evaluating chemical hazards. The OECD worked closely together with the Istituto Superiore di Sanità (Italy) and the European Chemicals Agency (ECHA), supported by a variety of international experts to develop a checklist of criteria and guidance for evaluating each criterion. The aim of the QAF is to help establish confidence in the use of (Q)SARs in evaluating chemical safety, and was designed to be applicable irrespective of the modelling technique used to build the model, the predicted endpoint, and the intended regulator purpose.

The webinar provided an overview of the project and presented the main aspects of the framework for assessing models and results based on individual or multiple predictions.*

OECD Test Guidelines

- Most projects on OECD Test Guidelines Programme today are about harmonisation of non-animal methods
- · Achievements include a number of harmonised TGs e.g.
 - skin and eye irritation/corrosion
 - associated Performance Standards
 - related Guidance Document on IATA
 - skin sensitisation
 - Underpinning AOP
 - IATA case studies
 - Key event-based TGs
 - Defined Approaches TG

OECD / OCDE: Unclassified - Non classifié

TG 431

Test Guideline No. 431

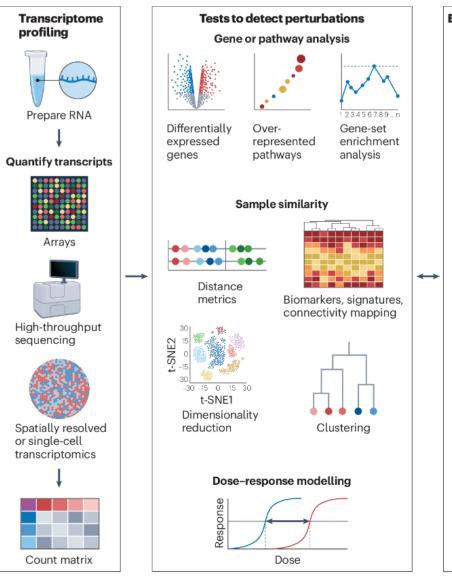
Vitro Skin Corrosion: Reconstructer uman Epidermis (RhE)Test Method

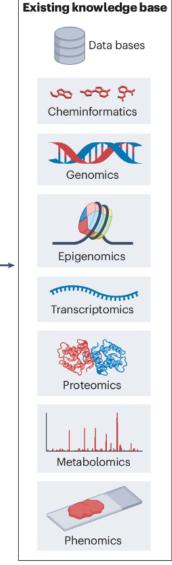
TG 439

In Vitro Skin Irritation: Reconstructed Human Epidermis Test Methods

Integrated Approaches to Testing and Assessment

Year									
All				ntries to share and explore the use of no					nical
Type of Assessment	haza	rd c	haracterisation within a regulatory conti	ext. Find all the published case studies in	the interac	ctive ta	able belo		
Select all		Lec	I	In	1	1	l	1	1
☐ Defined Approach	Year	No.	Title	Key words provided by the authors	AOPs (When a case study	Other AOP	Uncertainty reporting	NAMs	Low/no toxicity
☐ IATA workflow					includes a AOP that has a	wiki numb			
☐ In vitro battery					AOP-Wiki No., the AOP-Wiki	er			
Endpoint	<u> </u>				No. is listed.)				
☐ Select all	2022	1	Case Study on the Use of Integrated Approaches for Testing and Assessment for skin sensitisation of Diethanolamine;	NGRA framework with inconsistent NAMs Six DAs resulted in inconsistent predictions	X				
☐ Bioaccumulation ☐ Developmental neurotoxicity			Application of a Next Generation Risk Assessment Framework	PoD using WoE. MoE calculated by PoD Refined NGRA framework.					
	2022	2	Case Study on the use of Integrated Approaches for Testing	Two rule-based DAs for eye hazard identification (TG467)	х				
Developmental toxicity			and Assessment for "Eye hazard identification" of "non- surfactant neat liquids"	Four non-surfactant liquids with the different UN GHS DAL-1: physchem and in vitro test					
☐ Ecotoxicity			Surfactaric fleat flourus	DAL-2 : in vitro only					
☐ Endocrine disruption				Same conclusion with little uncertainty. Feasibility and reliability of the TG 467\					
Eye damage/irritation	2021	1	Case study for the integration of in vitro data in the	In vitro developmental neurotoxicity testing battery (DNT-IVB)	х		X	х	
Genotoxicity			developmental neurotoxicity hazard identification and characterisation using deltamethrin as a prototype chemical	Pyrethroids In vivo developmental neurotoxicity study					
☐ Mutagenicity	2021	2	Case study for the integration of in vitro data in the	In vitro developmental neurotoxicity testing battery (DNT-	Х		Х	Х	X
☐ Neurotoxicity			developmental neurotoxicity hazard identification and characterisation using flufenacet	IVB) • Flufenacet • In vivo developmental neurotoxicity study					
Chemical sctor	2021	3	Case study on the use of Integrated Approaches for Testing	DNT – developmental neurotoxicity	х		х	х	
☐ Select all			and Assessment for DNT to prioritize a class of Organophosphorus flame retardants	Prioritisation Flame retardants Tehrafish					
Cosmetic	2021	4	Case Study on the use of Integrated Approaches for Testing		х		x	х	_
☐ Industrial chemical			and Assessment for developmental neurotoxicity hazard characterisation of acetamiprid						
☐ Industrial chemical, Pesticide	2021	5	Case Study on the use of Integrated Approaches for Testing and Assessment for developmental neurotoxicity hazard		х		X	х	
Pesticide			characterisation of imidacloprid and the metabolite desnitro-imidacloprid						
	2021	6	Case Study on the use of Integrated Approaches to Testing and Assessment for potential Systemic Toxicity and Estrogen	Hazard characterization of BPA and alternatives Transcriptomic points of departure	x		х	x	


<u>Integrated Approaches to Testing and Assessment (IATA) | OECD</u>

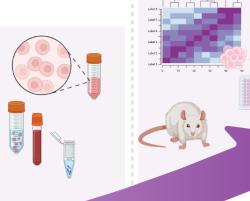


The promise of omics for human health and

environmental protection

- Molecular alterations occur before changes in apical endpoints
- Omics provides significant advantages over traditional toxicology tests
 - Rapid & cost-effective data generation
 - Reduction in animal use

Slide credit: M. Meier


Paving the Path to Confidence and Acceptance of Omics for Regulatory Applications

Interpretation

Relevance Application

Confidence

Transparency and Reproducibility

. .

Guidance Documents

- Special Omics section in the OECD Chemical Grouping Guidance
- OECD Guidance on Sampling for Omics

Test Guidelines

Validation Acceptance

- GARDskin: OECD TG 442E
- Optional sample preservation in OECD test guidelines

OECD Omics Reporting Frameworks

- Transcriptomics
- Metabolomics
- Proteomics (under development)

Data Interpretation Procedures

- Work pending
 - Omics Based Biomarkers
 - Linking genes, proteins and metabolites to AOPs

OECD IATA Case Studies Project

- 4 IATA Case Studies
- Application Reporting Module for Chemical Grouping and Read-Across