Experience of Uganda Cleaner Production Centre in promoting Green and Sustainable Chemistry in Uganda

Uganda Cleaner Production Centre(UCPC)

Profile

- UCPC was established in October 2001
- Situated on Plot M217, Jinja Road, Nakawa
- Capacity building in CP in the Public and Private Sectors
- Member of a family of over 50 NCPCs worldwide
- Member of ARSCP and Global RECP-net

Programmes promoted by UCPC in the area of Green and Sustainable Chemistry

- Global promotion, adaptation and application of innovative Chemical Leasing business approaches for sound chemicals management.
- 2) Promotion of Innovative Chemicals Management Approaches (IAMC).
- 3) Guidance development and case study documentation of green chemistry and technologies.
- 4) The Global GreenChem Innovation and Network Programme.

Impact of promoting IAMC in SRNL

- A team was set up to oversee the implementation of IAMC.
- Using the IAMC toolkit, three chemical management hotspots were. i.e
- i. High chemical usage in dyeing as a result of unreliable power resulting in rework and reprocessing,
- ii. Dyeing-process control, failure to monitor and regulate dying process parameters appropriately results in second quality fabric (faint shades) which requires addition of more dye and reprocessing to make fabric obtain a better shade and
- iii. Procurement of dye, the type of dye procured determines the amount of energy, water and chemicals used.

Implemented IAMC options in SRNL

- Invested USD 300,000 to switch to continuous dying process generating annual savings of USD 300,106. Due to reduced; water usage by 50,112m3/yr, chemical consumption by 14,400L and energy usge.
- Invested USD 150,000 to install a Spectro photometer, lab dyer and colour data machine. Annual saving amounted to USD 182,702 from reduced; reprocessing by 90%, water usage by 5,047m3/yr, chemical usage by 3,645L/yr and energy savings of 1,306,368kWh/yr.

A case of ChL implementation in the Beverage Sector

- A beverage sector is one of the most water intensive and thus discharges large volumes of effluent.
- CBL is a beverage company operating under PEPSI COLA International franchise.
- In December 2013, it decided to integrate ChL model in its operations closing working with Diversey with a goal of improving efficiency in water and chemical usage.
- ChL was successfully introduced to 3 processes i.e; Conveyor lubrication, bottle washing and Final rinse
- The business model changed from CBL paying for volumes of chemicals used to Lts of beverage produced.

Continuation

Before Chemical Leasing:	Uganda Shillings per litre or kilogramme of chemicals purchased
After Chemical Leasing:	Uganda Shillings per litre of beverage produced

Waste water foaming before Chemical Leasing

Foaming eliminated after implementation of the model

Achievements

Before Chemical Leasing		After Chemical Leasing
•	High water consumption both in bottle and case washing (116,000 m³ per year) and conveyor belt	Environmental benefits:
	lubrication (29,000 m³ peryear)	 Chemical use in bottle washing and conveyor belt lubrication reduced by 40% and 48%, respectively
•	High consumption of sodium hydroxide (500 kg	
	per day)	 Water consumption for the conveyor lubrication reduced by about 13,000 m³
•	The soap based lubricant required additional	
	cleaning and produced a high amount of foam in the effluent treatment plant and thus caused high treatment costs	 Less consumption of chemicals in the waste water treatment plant
		 Compliance with the waste water discharge
•	Overstepping of relevant waste water discharge reference values	standards
		No more overconsumption of sodium hydroxide
•	Lack of appropriate chemicals storage rooms	- No more overconsumption of socialit hydroxide
		 Less energy consumption resulting in reduced CO2
•	Poor management of obsolete chemicals at plant level	emissions (about 150 tons per year)

Continuation

Economic benefits:

- Economic savings of \$350,000 per year
- Long-term business partnership
- Improved stock management

Social benefits:

- Better working environment with reduced chemical spillages
- Reduced risk of chemical injuries due to substitution of solid sodium hydroxide by a diluted one
- Constant information exchange between the supplier and the user of chemicals
- On-site technical support from chemicals supplier to train the company's employees

Thank you for your attention

